This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Manganese(II) Sulfate Powder is an Efficient Catalyst for the Synthesis of Coumarins from *In Situ* Generated Stabilized Phosphorus Ylides in Solvent-Free Conditions

Ali Ramazani^{ab}; Ali Reza Kazemizadeh^b; Farzin Marandi^b

^a Chemistry Department, Zanjan University, Zanjan, Iran ^b Chemistry Department, Zanjan Islamic Azad University, Zanjan, Iran

To cite this Article Ramazani, Ali , Kazemizadeh, Ali Reza and Marandi, Farzin(2005) 'Manganese(II) Sulfate Powder is an Efficient Catalyst for the Synthesis of Coumarins from *In Situ* Generated Stabilized Phosphorus Ylides in Solvent-Free Conditions', Phosphorus, Sulfur, and Silicon and the Related Elements, 180: 7, 1541 - 1544

To link to this Article: DOI: 10.1080/10426500590917407 URL: http://dx.doi.org/10.1080/10426500590917407

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 180:1541-1544, 2005

Copyright © Taylor & Francis Inc. ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500590917407

Manganese(II) Sulfate Powder is an Efficient Catalyst for the Synthesis of Coumarins from *In Situ* Generated Stabilized Phosphorus Ylides in Solvent-Free Conditions

Ali Ramazani

Chemistry Department, Zanjan Islamic Azad University, Zanjan, Iran, and Chemistry Department, Zanjan University, Zanjan, Iran

Farzin Marandi Ali Reza Kazemizadeh

Chemistry Department, Zanjan Islamic Azad University, Zanjan, Iran

Protonation of the highly reactive 1:1 intermediates, produced in the reaction between triphenylphosphine and dialkyl acetylenedicarboxylates, by phenols (1-hydroxynaphthalene, 2-hydroxynaphthalene, and 4-bromophenol) leads to vinyltriphenylphosphonium salts, which undergo aromatic electrophilic substitution reaction with conjugate base to produce corresponding stabilized phosphorus ylides. Manganese(II) sulfate powder was found to catalyze conversion of the stabilized phosphorus ylides to coumarins in solvent-free conditions at 90°C due 1 h in high conversions. Microwave also was found to catalyze the same reactions in the presence of manganese(II) sulfate powder in solvent-free conditions at microwave power 1 KW in 1 min.

Keywords Coumarin; manganese(II) sulfate; microwave; phenol; solvent-free conditions

INTRODUCTION

Coumarins are very well known natural products and many such compounds exhibited high levels of biological activity. Coumarins are also used as additives to food and cosmetics, optical brightening agents, and dispersed flurescent and laser dyes. In addition some coumarins are of much interest as a result of their toxicity, carcinogenity, and photodynamic effects. In the past we have established a convenient, one-pot method for preparing stabilized phosphorus ylides utilizing

Received October 1, 2003; accepted October 16, 2003.

This work was supported by the Zanjan Islamic Azad University Research Council via research project number ZIAURC56.82.6562.

Address correspondence to Ali Ramazani, Chemistry Department, Zanjan Islamic Azad University, P.O. Box 49195-467, Zanjan, Iran. E-mail: a-ramazani@mail.znu.ac.ir

in situ generation of the phosphonium salts.^{8–12} Recently we have reported on catalytic rule of silica gel powder in the synthesis of coumarins in solvent-free conditions¹³ in fairly good yields.¹⁴ The use of microwave irradiation to bring about organic transformations has taken new dimensions in the recent years.¹⁵ In this article, we report on catalytic rule of manganese(II) sulfate powder in conversion of *in situ* generated stabilized phosphorus ylides (5) to corresponding coumarins (6) in solvent-free conditions under thermal and microwave conditions (Scheme 1).

$$(C_6H_5)_3P + RO_2CC \equiv CCO_2R + R_3$$

$$1 \quad 2a : R=Me \\ 2b : R=Et$$

$$3a-c : Phenois$$

$$(C_6H_5)_3P^{+-}C = CHCO_2R + R_3$$

$$CO_2R + R_3$$

$$4a-e + R_3$$

$$R_3$$

$$Aa-c : Phenois$$

$$CH_2CI_2 + R_3$$

$$R=Me + R_3$$

$$R_3$$

$$R_4$$

$$R_3$$

$$R_3$$

$$R_3$$

$$R_3$$

$$R_4$$

$$R_3$$

$$R_3$$

$$R_3$$

$$R_3$$

$$R_4$$

$$R_3$$

$$R_3$$

$$R_4$$

$$R_3$$

$$R_4$$

$$R_3$$

$$R_4$$

$$R_3$$

$$R_4$$

$$R_3$$

$$R_4$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_4$$

$$R_5$$

$$R_4$$

$$R_5$$

$$R_4$$

$$R_5$$

$$R_7$$

RESULTS AND DISCUSSION

The stabilized phosphorus ylide (5) may result from initial addition of triphenylphosphine 1 to the acetylenic ester 2 and concomitant protonation of the 1:1 adduct, followed by the electrophilic attack of the vinyltriphenylphosphonium cation to the aromatic ring at *ortho* position relative to the strong activating group (Scheme 1). TLC indicated formation of ylides 5 in CH₂Cl₂. Manganese(II) sulfate powder was found to catalyze conversion of the stabilized phosphorus ylides 5 to coumarins (6a-e) in solvent-free conditions at 90°C in 1 h in high conversions. Microwave also was found to catalyze the same reactions in the presence of manganese(II) sulfate powder in solvent-free conditions at microwave power 1 KW in 1 min. The structures 6a-e were deduced from their melting points, IR, and ¹H NMR spectra. All of these data are the same as our previous reports data for the compounds 6a-e. ^{14,16,17}

In summary, we have found that manganese(II) sulfate powder is able to catalyze conversion of *in situ* generated stabilized phosphorus ylides (**5**) to corresponding coumarins (**6**) in solvent-free conditions under thermal and microwave conditions (Scheme 1). Other aspects of this process are under investigation.

EXPERIMENTAL

Commerical oven Butane M245 was used for microwave irradiation. Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. IR spectra were recorded on a Shimadzu IR-460 spectrometer. ¹H and ¹³C NMR spectra were measured with a BRUKER DRX-500 AVANCE spectrometer at 500 and 125 MHz, respectively.

General procedure for the preparation of coumarins (**6a–e**): To a magnetically stirred solution of triphenylphosphine **1** (0.262 g, 1 mmol) and phenol **3** (1 mmol) in $CH_2Cl_2(5 \text{ mL})$ was added dropwise a mixture of **2** (1 mmol) in CH_2Cl_2 (3 mL) at $-10^{\circ}C$ over 15 min. The mixture was allowed to warm up to room temperature. Manganese(II) sulfate powder (2 g) was added and the solvent was evaporated. Dry manganese(II) sulfate powder and the residue were heated for 1 h at $90^{\circ}C$ (or were irradiated in the microwave oven at microwave power 1 KW (100%) for 1 min) and then placed over a column of silica gel (10 g). The column chromatography was washed using ethyl acetate-light petroleum ether (1:10) as eluent. The solvent was removed under reduced pressure and products were obtained as orange crystals (**6a–b**), reddish crystals (**6c–d**) and white crystals (**6e**). The characterization data of the compounds (**6a–e**) are given in our previous reports. 16,18,19

REFERENCES

- R. D. H. Muvay, J. Mendey, and S. A. Brown, The Natural Coumarins (Wiley, New York, 1982).
- [2] R. O. Kenedy and R. D. Tharnes, Coumarins: Biology, Application and Mode of Action (Wiley, Chichester, 1997).
- [3] M. Zahradink, The Production and Application of Flurescent Brightening Agents (Wiley, 1992).
- [4] M. Maeda, Laser Dyes (Academic Press, New York, 1994).
- [5] S. Kadis, A. Ciegler, and S. Ajl, Meorev, 7, 1 (1972).
- [6] G. P. Ellis and G. B. West, Plug. Med. Chem., 10, 109 (1974).
- [7] P. Wells and H. Mossison, J. Am. Chem. Soc., 97, 154 (1975).
- [8] A. Ramazani and A. Bodaghi, Tetrahedron Lett., 41, 567 (2000).
- [9] I. Yavari and A. Ramazani, Synth. Commun., 27, 1385 (1997).
- [10] I. Yavari, A. Ramazani, and A. Yahya-Zadeh, Synth. Commun., 26, 4495 (1996).
- [11] I. Yavari and A. Ramazani, Phosphorus, Sulphur, and Silicon, 130, 73 (1997).
- [12] A. Ramazani, N. Shajari, and F. Gouranlou, Phosphorus, Sulphur, and Silicon, 174, 223 (2001).
- [13] K. Tanaka and F. Toda, Chem. Rev., 100, 1025 (2000).
- [14] A. Ramazani and A. Souldozi, Phosphorus, Sulphur, and Silicon, 178, 1325 (2003).
- [15] S. Munavalli, D. K. Rohrbaugh, G. W. Wagner, F. R. Longo, and H. D. Durst, Phosphorus, Sulphur, and Silicon, 177, 781 (2002).
- [16] A. Ramazani and A. Souldozi, Phosphorus, Sulphur, and Silicon, 178, 1329 (2003).
- [17] A. Ramazani and A. Souldozi, Phosphorus, Sulphur, and Silicon, 178, 2192 (2003).